
WSPR WEAK SIGNAL PROPAGATION REPORTING

CHEROKEE AMATEUR RADIO SOCIETY 2021-09-11 TRAINING

PRESENTED BY TIM WALL – JK4RDF MARTIN BUEHRING – KB4MG

WSPR THEORY

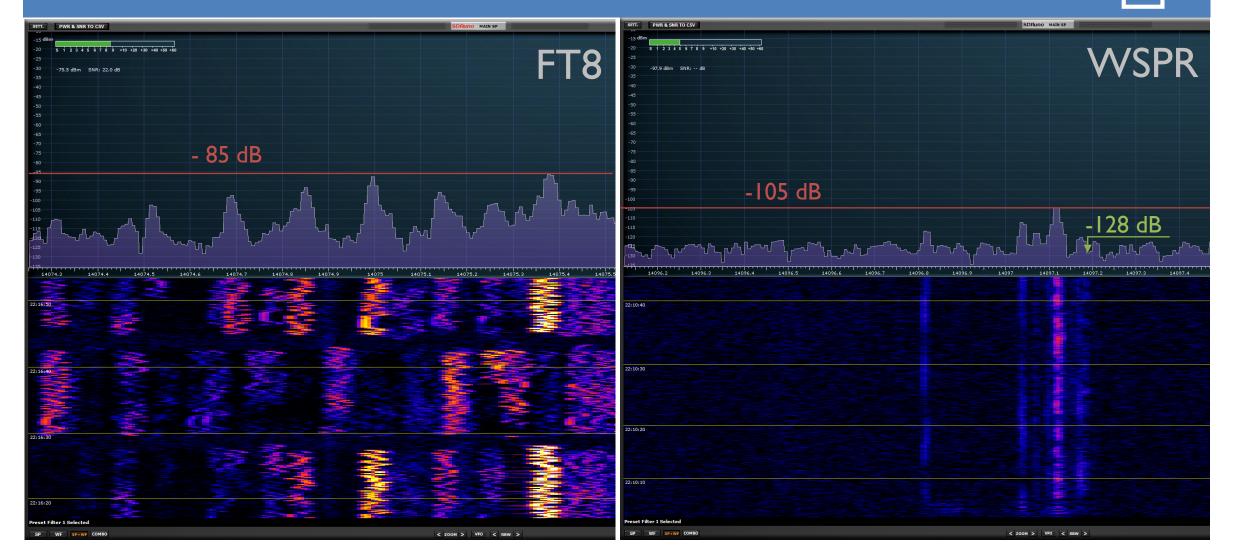
BEHIND THE SCENES & IN THE WEEDS

WHAT IS WSPR

- Weak <u>Signal</u> Propagation <u>Reporter</u> WSPR
- Designed for probing potential radio propagation paths
- Low-power beacon-like transmissions
- Standard transmissions carry
 - Callsign
 - Maidenhead grid
 - Power in dB relative to mW
 - Example KJ4RDF EM74 27
- Receiving stations report signals to WSPRnet.org and used by other websites and tools
- WJST-X and WSPR 2.0 can decode at -28 dB on a WSJT scale (2500 Hz reference bandwidth)

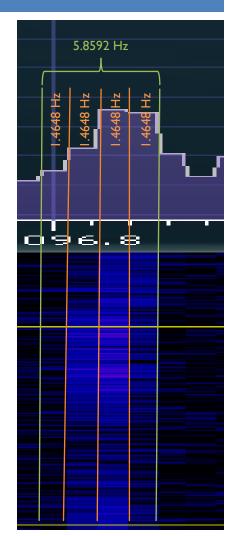
COMPARISON TO OTHER DIGITAL MODES

- Emission protocol is FID frequency-shift keying
- WSPR is considered a slow mode maybe the slowest of all structured modes (Keying Rate = 1.465)
- WSPR uses the most extensive error correction (n=162 K=50 yields 30.86% message and 69.14% error correction)
- Has smallest bandwidth of structed slow modes (Bandwidth = 5.9 Hz)


Table 15.7

Parameters of Structured Modes

A — Structured Slow Modes


Mode	FEC Type	(n, k)	Q	Modulation Type	Keying Rate	Bandwidth (Hz)	Sync Energy	Transmit Duration (s)	S/N Threshold (dB)
FT4	LDPC	(174,91)	4	4-GFSK	20.833	83.3	0.16	5.04	–17.5
FT8	LDPC	(174,91)	8	8-GFSK	6.25	50.0	0.27	12.6	-20.8
JT4	Convolutional	(206,72)	2	4-FSK	4.375	17.5	0.50	47.1	-23
JT9	Convolutional	(206,72)	8	9-FSK	1.736	15.6	0.19	49.0	-27
JT65	Reed-Solomon	(63,12)	64	65-FSK	2.692	177.6	0.50	46.8	-25
QRA64	Q-ary Repeat Accumulate	(63,12)	64	64-FSK	1.736	111.1	0.25	48.4	-26
WSPR	Convolutional	(162,50)	2	4-FSK	1.465	5.9	0.50	110.6	-31

FT8VS.WSPR SIGNAL USING SDRuno

WSPR NARROW BAND 4-FSK ENCODING

- Message is 162 symbols sent in 110.6 seconds starting on the even minute +1 second
- Standard message components and size after compression is 50 bits
 - 28 bits Callsign
 - I5 bits Grid
 - 7 bits Power
- Forward Error Correction FEC
 - Non-recursive convolutional code constraint length K = 32, rate 1/2
- Message 50 bits + FEC ||2 = |62
- Data symbols + Sync symbols = Channel symbols (next slide for details)
- Bandwidth Tone separation: I.4648 Hz X 4 Channels = 5.8592 Hz (~6 Hz)
- Transmitted at 1.465 baud (keying rate)

CODING EXAMPLE

Message: KJ4RDF EM74 27

Source-encoded message (50 bits, hex): 8A CE 52 5B A9 96 C0

Data symbols:

 I
 I
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Sync symbols:

Channel symbols:

3 3 2 0 0 0 2 2 3 2 2 2 1 3 3 2 0 0 3 0 2 1 0 3 3 1 3 0 2 2 0 0 2 0 3 0 2 3 2 1 0 2 0 2 0 3 0 3 1 2 2 3 3 0 1 0 0 2 1 1 0 3 2 0 0 0 1 1 0 1 0 3 2 3 2 1 0 0 3 0 0 1 2 1 3 0 2 0 1 1 0 1 0 1 0 2 2 3 2 2 0 0 2 3 2 2 1 2 0 1 1 1 2 3 3 0 0 1 3 0 3 0 0 2 1 3 3 2 2 0 0 0 3 0 3 0 0 1 3 2 0 0 0 0 0 3 3 0 3 0 1 1 0 0 0 3 1 0 0 2

Decoded message: KJ4RDF EM74 27 ntype: 27

Coded Using: <u>http://physics.Princeton..edu/pulsar/KIJT/WSPRcode.exe</u>

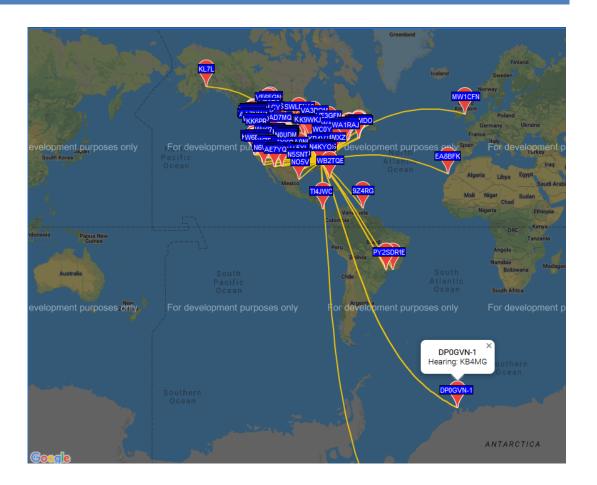
Logic

- Original message: "KJ4RDF EM74 27"
- Compressed and converted to hexadecimal (0 F)
- FEC added and converted to binary (0 1)
- Sync symbols known on both sides, TX/RX
- Data and sync symbols generate channel symbols

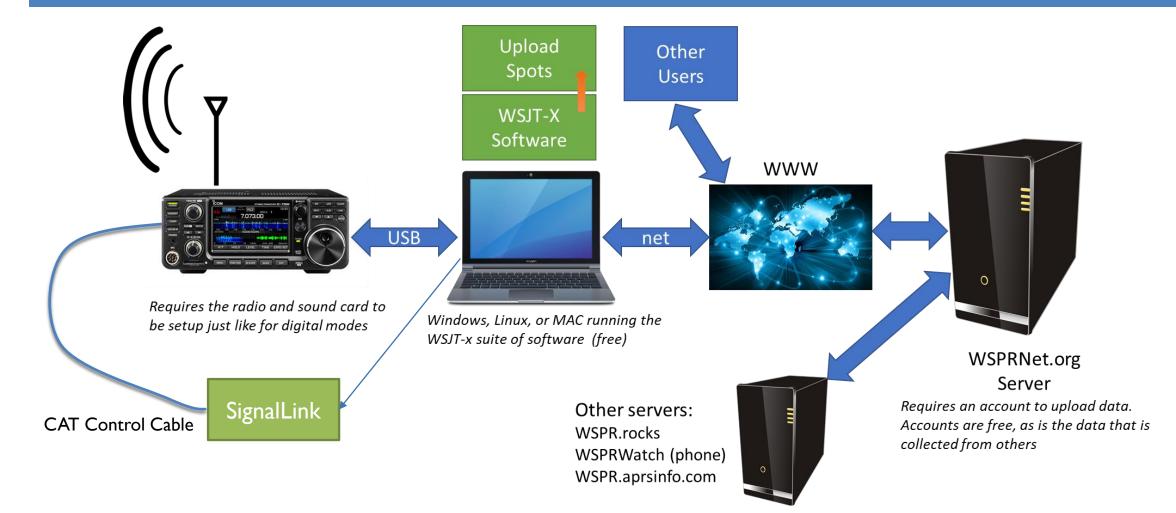
Binary	Decimal
0 (00)	0
I (01)	I
10	2
П	3

- Sent/received using 4-FSK modulation, frequency channels 0 3
- Process reversed on receive to decode to original message

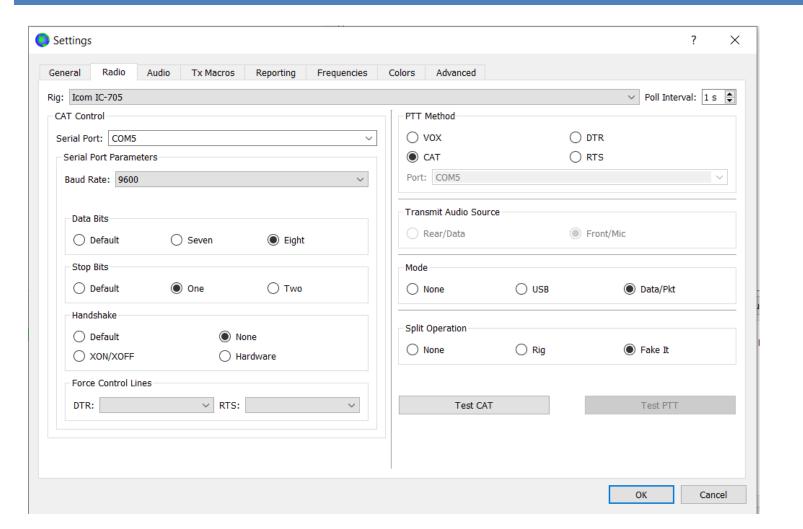
WSPR IN PRACTICE


SETTING UP TO RUN WSPR MODE

SETTING UP WSPR



- Stand-alone solutions like SOTA BEAMS (<u>https://www.sotabeams.co.uk/wsprlite-antenna-tester/</u>)
- Kit building or Home brewing a WSPR device



USING WSPR WITH YOUR HF RADIO

WSPR SETUP USING WSJT-X

Must be configured for CAT control for your particular rig

YouTube or online help can be your friend here for many types of rigs.

The Audio tab should be set to use your appropriate audio channel from your PC. For USB , this is called the USB Audio CODEC

ENABLE REPORTING

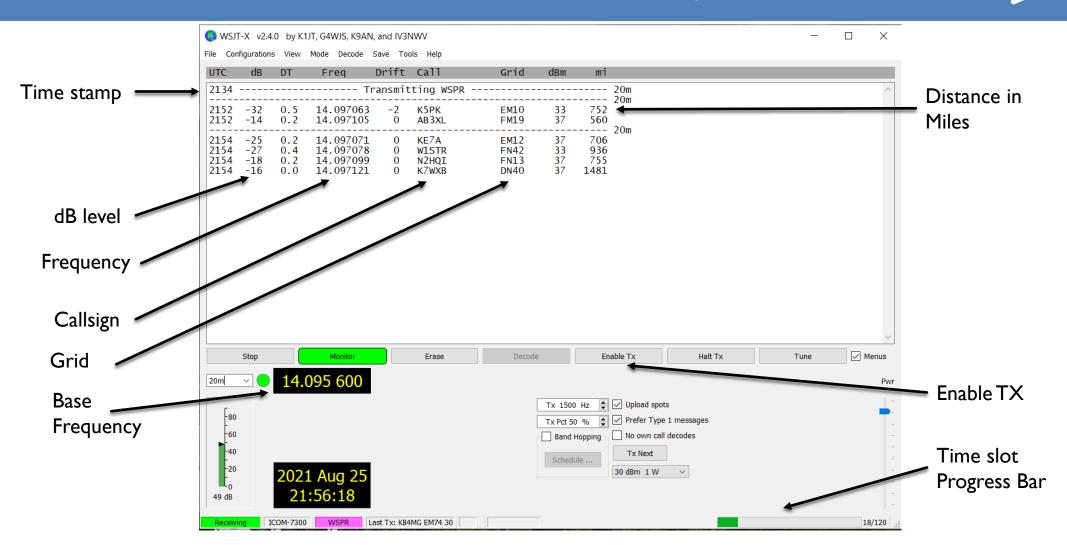
Settings						?	
General Radio Audi	io Tx Macros	Reporting	Frequencies	Colors	Advanced		
Logging							
Prompt me to log QSO)				Op Call:		
Log automatically (con	testing only)						
Convert mode to RTTY	r						
dB reports to comment	ts						
Clear DX call and grid	after logging						
Network Services							
Enable PSK Reporter S	potting			Use	e TCP/IP connection		
UDP Server							
UDP Server:	127.0.0.1					Accept UDP requests	
UDP Server port number:	2237					Notify on accepted UDP request	
						Accepted UDP request restores wind	dow
Secondary UDP Server (de	precated)						
Enable logged contact	ADIF broadcast						
Server name or IP address	s: 127.0.0.1						
Server port number:	2333						-
						OK Ca	ancel

Be a part of the WSPR Community and enable the reporting function.

Reports will be sent by Internet to the WSPRNet Server so people can see what you are receiving at your location.

ANTENNA AND PROPAGATION TESTING

dB DT	Fre	eq	Dri	ift	Call			Gri	id	dBm	I	mi												
WSPR Band H	Hopping	1																			-		×	
	2190m	630m	160m	80m	40m	30m	20m	17m	15m	12m	10m	6m	4m	2m	1.25m	70cm	33cm	23cm	13cm	9cm	6cm	3cm	1.25cm	٦.
Sunrise grayline																								
Day																								
Sunset grayline																								
Night																								
Tune																								
Rx only																								
																					Gray	time:	50min 😫	3
Stop		Monito	r			Erase				Decode	9		I	Enable 1	Гх		н	alt Tx			Т	une		~
⊡ 0. 0	000 (000																						
											Tx 1	500 Hz	\$	🗸 Uplo	ad spots									
												t 50 %			er Type I									
											🗹 Bai	nd Hopp	ing	_	own call o Next	lecodes								
	1 Se ':44:										Sch	edule		30 dBm		\sim								
														50 000	1 1 11									

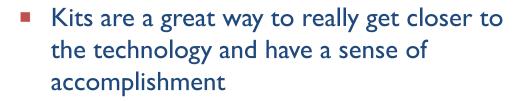

If your use case is for testing your antenna or checking propagation, the Band Hopping feature may be of interest.

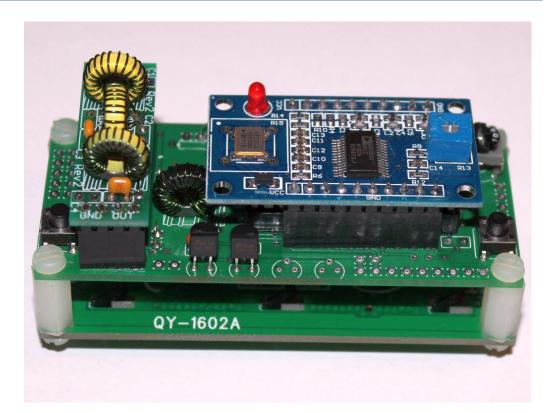
Really great if you have a multi-band antenna

Can be used to check propagation across multiple bands.

Notice there is an RX only option as well time of day and TUNE option for antennas needing tuning for each band.

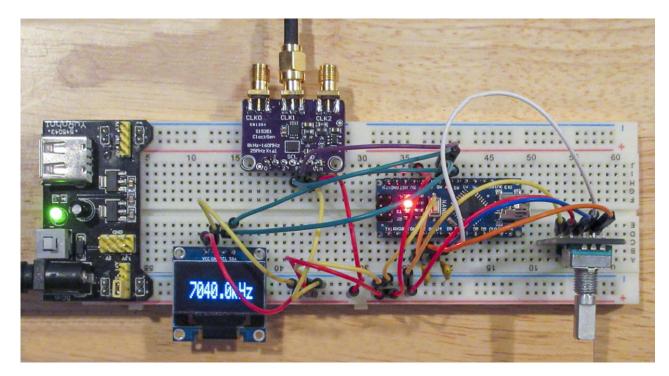
RUNNING WSPR ON YOUR COMPUTER - WSJT-X IN WSPR MOD

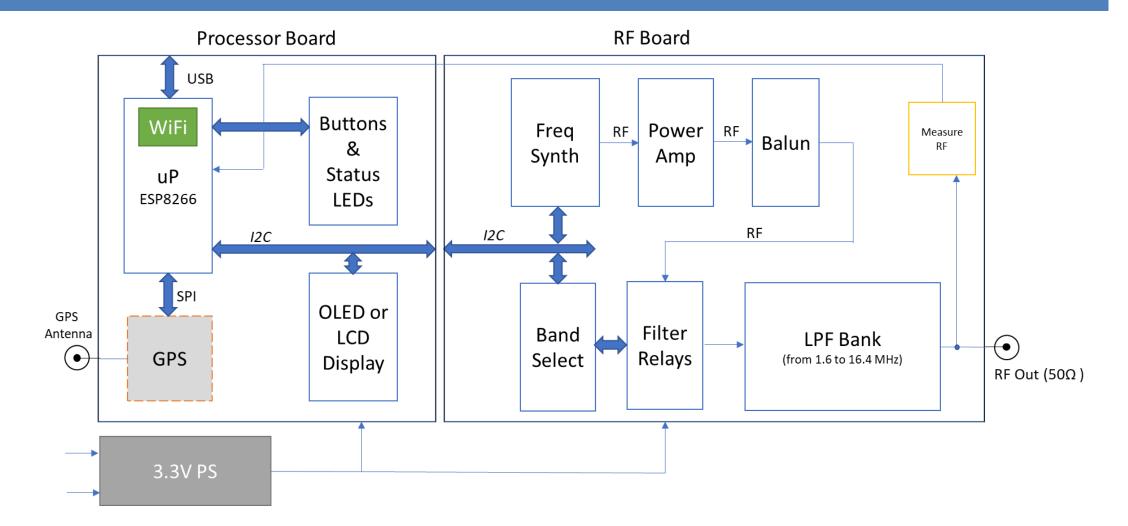

STAND-ALONE PRODUCTS FOR WSPR


ZachTek WSPR Transmitter Setup Beta 0.56 Serial Port COM34 Close	- C X
WSPR Configuration Call Sign AA0AAA Bands to transmit on 2190m (137.500kH2) 630m (475.700kH2) 160m (1.838,100MH2) 30m (1574,100MH2) 30m (10.140,200MH2) 30m (10.140,200MH2) 30m (10.140,200MH2) 17m (18.106,100MH2) 12m (24.926,200MH2) 12m (24.926,200MH2) 12m (24.926,200MH2) 0m (50.294,500MH2) Pause efter transmission. Start 00120 Seconds	GPS Position 0000 Dutput frequency 2000000000 MHz kHz Hz Transmitter Output 0n 0ff Program running WSPR Beacon Signal Generator Idle Boot Configuration Signal Generator WSPR Beacon Idle Debug Stop Save

- Most are transmit-only devices
- Require a PC for setup of your call sign, grid square, band(s), and operation times.
- Assume a "tuned" antenna is connected
- Optional GPS for time base
- Turn-key operation, nothing to assemble
- Costs are \$80 to \$140
- Vendors :
 - SOTABEAMS
 - ZACHTEK –also has a receiver
 - QRP-LABS

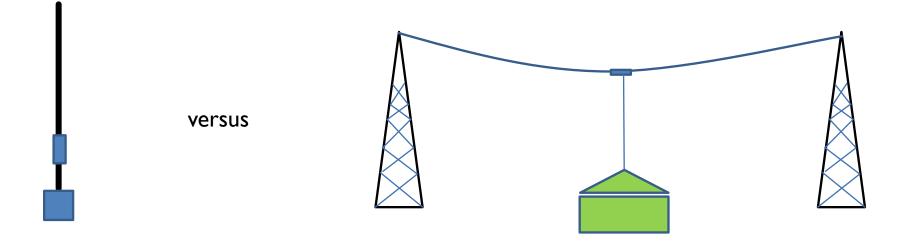
WSPR DIY


- Builds skills in soldering, winding torids, and troubleshooting any problems
- Kits can be very cost effective. \$30-\$60 ranges
- Allows for some experimentation


HOMEBREW WSPR

- Homebrewing is possible with inexpensive components and modules.
- Articles in various magazines and books can be the inspiration for your project
- QST has had a few articles on WSPR. December 2020 issue shows the design and Arduino code to build a single band transmitter
- Learn to breadboard a design that you may want to build a permanent version of.

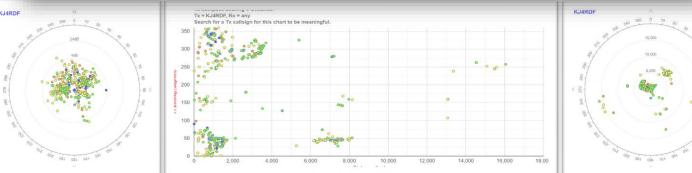
KB4MG HOMEBREW DESIGN – STILL TO BE BUILT



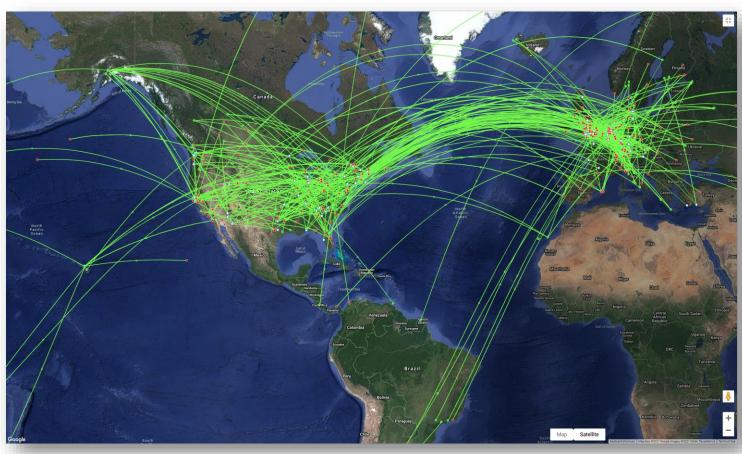
WSPR USE CASES

BE THE SUPERHERO OF PROPAGATION

USE CASE: ANTENNA COMPARISONS



- What if you have two HF antennas to choose from? Which one should you use for the current propagation conditions?
- What is working better for DX?
- What if I lower my dipole for NVIS? What stations can pick me up and where?

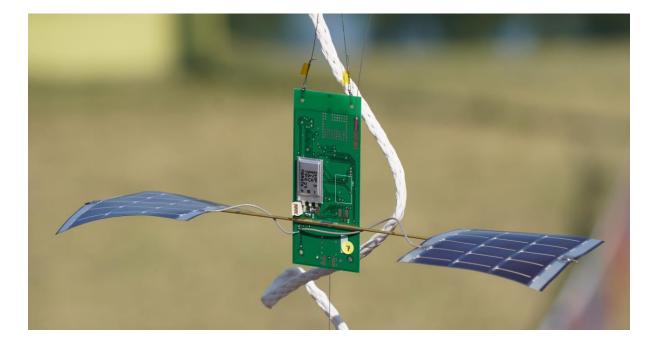

USE CASE: ANTENNA PATTERN STUDY

- WSPR reports provide geographic locations for receiving stations
- Running WSPR for a period of time will show you generally how your antenna system is radiating
- WSPR.Rocks offers a map view that is the easiest to understand
- Also offers advanced charts and graphs to show details on compass and bearing,

USE CASE: QUICK SIGNAL PATH & BAND PREDICTOR

max spots 5000 auto-search Fetch data	1 hou	r 2	20m	RX call	TX call	🗌 🗙 uni	que calls	
wtf2 state charts man table home -	max spot	ts 5000) auto	-search	Fetc	h data		
	urtf2	otata	oharta	man	tabla	homo	-	

- Using WSPR.Rocks run query on the last hour for all calls sent and received
- Limit it by target band Ex 20m
- View on map to see where paths are open
- Big evening on 20m into Europe
- Not so good to Asia or South America

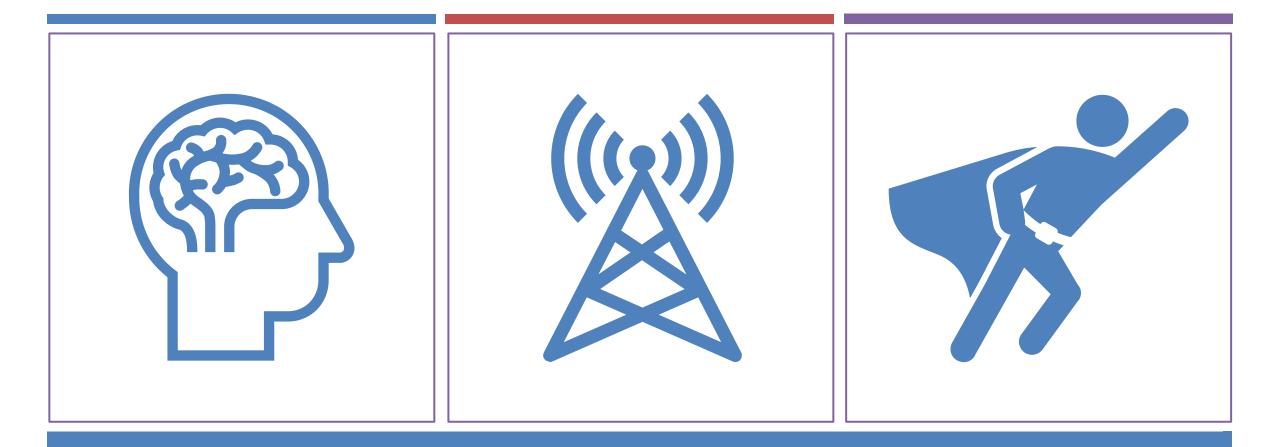

Query run on 2021-08-26 @ 21:00 UTC

AMATEUR RADIO BALLOONS

WSPR can be used on high altitude balloon launches

These also generally have APRS as well as WSPR

Recently KM4ZIA – Jack McElroy and his sister Audrey launched a balloon here in Georgia that was tracked by radio amateurs, going around the world 5 times and crashing somewhere near Qiqihar, China.


USE CASE: BECAUSE WE CAN

0	WSJT->	X v2.4.0 by	/ K1JT, G4	NJS, K9A	N, and IV3N	wv							_		\times
File	e Cor	nfigurations	View	Mode	Decode	Save	Tools	s Help							
U	TC	dB	DT	Fr	eq	Dri	ft	Call		Grid	l dBm	mi			
1	916	-27	0.5	14.	097146		0	N5MCB		EM13	30	715			~
1	916	-34	0.1	14.	097166		0	KC5NK		EM13	37	715			
1	916	-17	3.2	14.	097174		0	VE2DPF		FN35	37	998			
1	916	-26	0.0	14.	097182		1	N1PCE		FN44	30	1020			
1	916	-22	0.2	14.	097191		0	K7CMI		DN57	27	1569			
-													20m		
1	918	-17	0.2		097065		0	<ke7a></ke7a>		EM12	KX 37	730			
1	918	-23	0.1	14.	097070	-	1	VE3NM		FN14	37	825			
1	918	-17	-0.1	14.	097093		0	k5rnd		EM22	37	612			
-													20m		
	920	-17	0.3		097055		0	WA2KQD		FN30		775			
	920	-24	0.5		097076		0	NK5G		EM20		657			
1	920	-19	-2.4	14.	097099		0	K1YZY		FN41	. 37	900			\checkmark
	<u>S</u> to	op	<u>M</u> onito	or	<u>E</u> rase		D	ecode	E <u>n</u> able	Tx	<u>H</u> alt Tx	Tu	ne	🗹 Ме	enus
2	Dm	\sim	14.09	95 60	0										Pwr
	г							Tx 1436	5 Hz 🖨	🗹 Uploa	d snots				
	-80														-
								Tx Pct 2	0 % 韋	✓ Prefer	Type 1 message	es			-
	-60							Band I	Hopping	No ow	n call decodes				-
	-40									Tx Nex	et .				-
	ŀ							Sched	ule	TX Nez	a				-
	-20									27 dBm	500 mW \sim				-
	L ₀		2021	Aua (05										-
6	50 dB			22:07											-
	0 00		19.4	22.07											-
	Receivi	ing	WSPR						Day					7/1	20
	Receivi	ing	WORK .						Day					//1	20

OPEN DISCUSSION

APPENDIX / REFERENCES

REFERENCES & RESOURCES

- WSPR General Info
 - Site at Princeton University https://physics.princeton.edu/pulsar/kljt/wspr.html
 - ARRL Handbook Chapter 15
 - I 5.4.3 Slow Modes
 - Table 15.7 Parameters of Structured Modes, A Structured Slow Modes
- Signal Comparisons using SDRplay and SDRuno

http://sdrplay.com

- WSPR Narrow Band Encoding Protocol and Details https://physics.princeton.edu/pulsar/k1jt/WSPR 2.0 User.pdf
- Error Correction
 - ARRL Handbook Chapter 15, 15.1.2 Error Detection and Correction
 - Tutorials Point: Error Detection and Correction
 https://www.tutorialspoint.com/computer_logical_organization/error_codes.htm
 - Convolution Code
 - ARRL Handbook Chapter 15, Page 15.8 15.9
 - A Visual Guide To Forward Error Correction Part Two Convolutional Codes https://john.soban.ski/visual-guide-to-forward-error-correction-part-two.html
 - Iain Explains Signals, Systems, and Digital Comms on YouTube.Com https://youtu.be/EgYKMDBj_zQ

- FSK Modulation
 - Tutorials Point: Frequency Shift Keying

https://www.tutorialspoint.com/digital_communication/digital_communication_frequency_shift_keying.htm

BFSK (2FSK) vs. 4FSK

https://www.rfwireless-world.com/Terminology/2FSK-modulation-vs-4FSK-modulation.html

- Stand Alone WSPR Products
 - SOTA Beams https://www.sotabeams.co.uk/wsprlite-antenna-tester/
 - ZACHTEK <u>https://www.zachtek.com/</u>
 - QRP-LABS <u>https://www.qrp-labs.com/</u>
- WSPR Reporting Sites
 - WSPRnet <u>http://wsprnet.org</u>
 - Central DB
 - User Forums ✓
 - A bit dated ×
 - WSPR.Rocks <u>http://wspr.rocks</u>
 - Modern and easy to use ✓
 - Nice tools and charts ✓
 - PSK Reporter <u>http://pskreporter.info</u>
 - Uses azimuthal projection map ✓ ✓
 - Limited data on WSPR ×